

Conditional Joint Distributions

Chris Piech CS109, Stanford University

Tracking in 2D Space?

Joint Random Variables

Joint Random Variables

Use a joint table, density function or CDF to solve probability question

Think about **conditional** probabilities with joint variables (which might be continuous)

Use and find **independence** of random variables

Use and find **expectation** of random variables

What happens when you add random variables?

Joint Probability Table

	Roommates	2RoomDbl	Shared Partner	Single	
Frosh	0.30	0.07	0.00	0.00	0.37
Soph	0.12	0.18	0.00	0.03	0.32
Junior	0.04	0.01	0.00	0.10	0.15
Senior	0.01	0.02	0.02	0.01	0.05
5+	0.02	0.00	0.05	0.04	0.11
	0.49	0.27	0.07	0.18	1.00

Continuous Joint Random Variables

Dart Results

Joint Probability Density Function

A **joint probability density function** gives the relative likelihood of **more than one** continuous random variable **each** taking on a specific value.

$$P(a_1 < X \le a_2, b_1 < Y \le b_2) = \int_{a_1}^{a_2} \int_{b_1}^{b_2} f_{X,Y}(x, y) \, dy \, dx$$

End Review

Jointly Continuous

$$P(a_1 < X \le a_2, b_1 < Y \le b_2) = \int_{a_1}^{a_2} \int_{b_1}^{b_2} f_{X,Y}(x, y) \, dy \, dx$$

Cumulative Density Function (CDF):

$$F_{X,Y}(a,b) = \int_{-\infty}^{a} \int_{-\infty}^{b} f_{X,Y}(x,y) \, dy \, dx$$

$$f_{X,Y}(a,b) = \frac{\partial^2}{\partial a \, \partial b} F_{X,Y}(a,b)$$

Jointly CDF

$$P(a_1 < X \le a_{2}, b_1 < Y \le b_2)$$

$$P(a_1 < X \le a_{2,b_1} < Y \le b_2) = F_{X,Y}(a_{2,b_2})$$

$$P(a_1 < X \le a_2, b_1 < Y \le b_2) = F_{X,Y}(a_2, b_2)$$

$$P(a_1 < X \le a_{2,b_1} < Y \le b_2) = F_{X,Y}(a_{2,b_2})$$
$$-F_{X,Y}(a_{1,b_2})$$

$$P(a_1 < X \le a_{2,b_1} < Y \le b_2) = F_{X,Y}(a_{2,b_2})$$
$$-F_{X,Y}(a_{1,b_2})$$

Probability for Instagram!

Gaussian Blur

In image processing, a Gaussian blur is the result of blurring an image by a Gaussian function. It is a widely used effect in graphics software, typically to reduce image noise.

Gaussian Blur

In image processing, a Gaussian blur is the result of blurring an image by a Gaussian function. It is a widely used effect in graphics software, typically to reduce image noise.

Gaussian blurring with StDev = 3, is based on a joint probability distribution:

Joint PDF

$$f_{X,Y}(x,y) = \frac{1}{2\pi \cdot 3^2} e^{-\frac{x^2 + y^2}{2 \cdot 3^2}}$$

Joint CDF

$$F_{X,Y}(x,y) = \Phi\left(\frac{x}{3}\right) \cdot \Phi\left(\frac{y}{3}\right)$$

Used to generate this weight matrix

Gaussian Blur

Joint PDF

$$f_{X,Y}(x,y) = \frac{1}{2\pi \cdot 3^2} e^{-\frac{x^2+y^2}{2\cdot 3^2}}$$

Joint CDF

$$F_{X,Y}(x,y) = \Phi\left(\frac{x}{3}\right) \cdot \Phi\left(\frac{y}{3}\right)$$

Each pixel is given a weight equal to the probability that X and Y are both within the pixel bounds. The center pixel covers the area where

$$-0.5 \le x \le 0.5$$
 and $-0.5 \le y \le 0.5$

What is the weight of the center pixel?

Weight Matrix

$$\begin{split} &P(-0.5 < X < 0.5, -0.5 < Y < 0.5) \\ &= P(X < 0.5, Y < 0.5) - P(X < 0.5, Y < -0.5) \\ &- P(X < -0.5, Y < 0.5) + P(X < -0.5, Y < -0.5) \\ &= \phi\left(\frac{0.5}{3}\right) \cdot \phi\left(\frac{0.5}{3}\right) - 2\phi\left(\frac{0.5}{3}\right) \cdot \phi\left(\frac{-0.5}{3}\right) \\ &+ \phi\left(\frac{-0.5}{3}\right) \cdot \phi\left(\frac{-0.5}{3}\right) \\ &= 0.5662^2 - 2 \cdot 0.5662 \cdot 0.4338 + 0.4338^2 = 0.206 \end{split}$$

Pedagogic Pause

Properties of Joint Distributions

Boolean Operation on Variable = Event

Recall: any boolean question about a random variable makes for an event. For example:

$$P(X \le 5)$$

$$P(Y=6)$$

$$P(5 \le Z \le 10)$$

Conditionals with multiple variables

Discrete Conditional Distribution

Recall that for events E and F:

$$P(E \mid F) = \frac{P(EF)}{P(F)}$$
 where $P(F) > 0$

Discrete Conditional Distributions

Recall that for events E and F:

$$P(E \mid F) = \frac{P(EF)}{P(F)}$$
 where $P(F) > 0$

- Now, have X and Y as discrete random variables
 - Conditional PMF of X given Y:

$$P_{X|Y}(x|y) = P(X = x|Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)} = \frac{p_{X,Y}(x,y)}{p_{Y}(y)}$$

Different notations, same idea.

Joint Probability Table

	Roommates	2RoomDbl	Shared Partner	Single	
Frosh	0.30	0.07	0.00	0.00	0.37
Soph	0.12	0.18	0.00	0.03	0.32
Junior	0.04	0.01	0.00	0.10	0.15
Senior	0.01	0.02	0.02	0.01	0.05
5+	0.02	0.00	0.05	0.04	0.11
	0.49	0.27	0.07	0.18	1.00

Room | Year

Transport | Year

Conditional Probability Table

Lunch | Year

Relationship Status | Year

Number or Function?

$$P(X = 2|Y = 5)$$

Number

Number or Function?

$$P(X=2|Y=y)$$

Function

(or 1D table)

Number or Function?

$$P(X = x | Y = y)$$

2D Function

(or 2D table)

And It Applies to Books Too

P(Buy Book Y | Bought Book X)

Continuous Conditional Distributions

Let X and Y be continuous random variables

$$P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$$

$$f_{X|Y}(x|y) \cdot \epsilon_x = \frac{f_{X,Y}(x,y) \cdot \epsilon_x \cdot \epsilon_y}{f_Y(y) \cdot \epsilon_y}$$

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_{Y}(y)}$$

Warmup: Bayes Revisited

Mixing Discrete and Continuous

Let X be a continuous random variable Let N be a discrete random variable

$$P(X = x | N = n) = \frac{P(N = n | X = x)P(X = x)}{P(N = n)}$$

$$P_{X|N}(x|n) = \frac{P_{N|X}(n|x)P_X(x)}{P_N(n)}$$

$$f_{X|N}(x|n) \cdot \epsilon_x = \frac{P_{N|X}(n|x)f_X(x) \cdot \epsilon_x}{P_N(n)}$$

$$f_{X|N}(x|n) = \frac{P_{N|X}(n|x)f_X(x)}{P_N(n)}$$

All the Bayes Belong to Us

M,N are discrete. X, Y are continuous

$$\begin{array}{ll} \text{OG BaYes} & p_{\scriptscriptstyle M|N}(m|n) = \frac{P_{\scriptscriptstyle N|M}(n|m)p_{\scriptscriptstyle M}(m)}{p_{\scriptscriptstyle N}(n)} \\ \\ \text{Mix BaYes} & f_{\scriptscriptstyle X|N}(x|n) = \frac{P_{\scriptscriptstyle N|X}(n|x)f_{\scriptscriptstyle X}(x)}{P_{\scriptscriptstyle N}(n)} \\ \\ \text{Mix BaYes} & p_{\scriptscriptstyle N|X}(n|x) = \frac{f_{\scriptscriptstyle X|N}(x|n)p_{\scriptscriptstyle N}(n)}{f_{\scriptscriptstyle X}(x)} \\ \\ \text{Mix Continuous} & f_{\scriptscriptstyle X|Y}(x|y) = \frac{f_{\scriptscriptstyle Y|X}(y|x)f_{\scriptscriptstyle X}(x)}{f_{\scriptscriptstyle Y}(y)} \end{array}$$

Warmup: Bayes Revisited

Warmup: Bivariate Normal

 X, Y follow a symmetric bivariate normal distribution if they have joint PDF:

$$f_{X,Y}(x,y) = \frac{1}{2\pi\sigma^2} \cdot e^{-\frac{[(x-\mu_x)^2 + (y-\mu_y)^2]}{2\cdot\sigma^2}}$$

Here is an example where:

Tracking in 2D Space?

Tracking in 2D Space?

You have a prior belief about the 2D location of an object.

What is your **updated belief** about the 2D location of the object after observing a **noisy distance** measurement?

Tracking in 2D Space: Prior

$$f_{X,Y}(x,y) = \frac{1}{2\pi\sigma^2} \cdot e^{-\frac{[(x-\mu_x)^2 + (y-\mu_y)^2]}{2\cdot\sigma^2}}$$

Relative to Satellite at (0, 0)

$$\mu_x = 3$$

$$\mu_y = 3$$

$$\sigma = 2$$

Prior belief with K: $f_{X,Y}(x,y) = K \cdot e^{-\frac{[(x-3)^2 + (y-3)^2]}{8}}$

You will observe a **noisy distance reading**. It will say that your object is distance D away

We can say how likely that reading is if we know the actual location of the object...

 $P(D \mid X, Y)$ is knowable!

Observe a ping of the object that is distance D away from satellite!

$$D|X, Y \sim N(\mu = \sqrt{x^2 + y^2}, \sigma^2 = 1)$$

Know that the distance of a ping is normal with respect to the true distance.

Observe a ping of the object that is distance D = 4 away!

Know that the distance of a ping is normal with respect to the true distance

Observe a ping of the object that is distance D = 4 away!

Know that the distance of a ping is normal with respect to the true distance

Observe a ping of the object that is distance D = 4 away from satellite!

$$D|X, Y \sim N(\mu = \sqrt{x^2 + y^2}, \sigma^2 = 1)$$

$$f(D = d|X = x, Y = y) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(d-\mu)^2}{2\sigma^2}}$$

$$=\frac{1}{\sqrt{2\pi}}e^{\frac{-(d-\mu)^2}{2}}$$

$$=K_2 \cdot e^{\frac{-(d-\mu)^2}{2}}$$

$$= K_2 \cdot e^{\frac{-(d-\sqrt{x^2+y^2})^2}{2}}$$

Tracking in 2D Space: New Belief

What is your *new* belief for the location of the object being tracked? Your joint probability density function can be expressed with a constant

Tracking in 2D Space: New Belief

$$f(X = x, Y = y | D = 4) = \frac{f(D = 4 | X = x, Y = y) \cdot f(X = x, Y = y)}{f(D = 4)}$$

$$= \frac{K_1 \cdot e^{-\frac{[4 - \sqrt{x^2 + y^2})^2]}{2} \cdot K_2 \cdot e^{-\frac{[(x - 3)^2 + (y - 3)^2]}{8}}}{f(D = 4)}$$

$$= \frac{K_3 \cdot e^{-\left[\frac{[4 - \sqrt{x^2 + y^2})^2]}{2} + \frac{[(x - 3)^2 + (y - 3)^2]}{8}\right]}{f(D = 4)}$$

$$= K_4 \cdot e^{-\left[\frac{(4 - \sqrt{x^2 + y^2})^2}{2} + \frac{[(x - 3)^2 + (y - 3)^2]}{8}\right]}$$

For your notes...

Tracking in 2D Space: Posterior

Prior

Posterior

Tracking in 2D Space: CS221

